Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Revista
Tipo del documento
Intervalo de año
1.
J Clin Med ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2163479

RESUMEN

Background: During the COVID-19 pandemic, elective surgery has to undergo longer wait times, including nephrectomy for T1 renal cell carcinoma (RCC). This study aimed to investigate the time-to-surgery (TTS) of Chinese T1 RCC patients and its influencing factors, and to illustrate the impact of TTS on the prognosis of T1 RCC. Methods: We retrospectively enrolled 762 Chinese patients with pathological T1 RCC that underwent nephrectomy. To discover the impact of TTS on survival outcomes, we explored the possible delay intervals by week using the Kaplan-Meier method and Log-rank test. Cox proportional hazard models with inverse probability-treatment weighting (IPTW) were used to assess the association between TTS and disease-free survival (DFS) and overall survival (OS). Results: The median TTS of T1 RCC patients was 15 days. The Charlson comorbidity index, the Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) score, and the maximal tumor diameter on presentation were independent influencing factors for TTS. The cut-off point of TTS was selected as 5 weeks according to the Log-rank analysis. For T1a RCC, patients with TTS > 5 weeks had similar DFS (HR = 2.39; 95% CI, 0.82−6.94; p = 0.109) and OS (HR = 1.28; 95% CI, 0.23−7.16; p = 0.779) compared to patients with TTS ≤ 5 weeks. For T1b RCC, patients with TTS > 5 weeks had shorter DFS (HR = 2.90; 95% CI = 1.46−5.75; p = 0.002) and OS (HR = 2.49, 95% CI = 1.09−5.70; p = 0.030) than patients with TTS ≤ 5 weeks. Conclusions: Prolonged TTS had no impact on the prognosis of T1a RCC while surgery delayed for over 5 weeks may lead to worse survival in T1b RCC.

2.
Nature ; 604(7907): 723-731, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1799583

RESUMEN

Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.


Asunto(s)
Macaca fascicularis , Transcriptoma , Animales , Comunicación Celular , Macaca fascicularis/genética , Receptores Virales/genética , Transcriptoma/genética , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA